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Abstract

A comprehensive description for the constitutive behavior of polycrystalline shape memory alloys (SMAs) is pro-
posed based on the concept that a SMA is dynamically composed of austenite and martensite, the constitutive behavior
of which is a dynamic combination of the individual behavior of each of the two phases. In the interested ranges of
stress and temperature the behavior of austenite is assumed to be linearly elastic while that of martensite elastoplastic.
The main features of SMAs such as ferroelasticity at lower temperature, shape memory effect (SME), pseudoelasticity at
higher temperature and other typical features can be successfully replicated with the proposed constitutive model. The
ferroelasticity, pseudoelasticity and SME of SMA Au-47.5 at.%Cd subjected to uniaxial forward and reverse loading
and the pseudoelasticity of Cu-Al-Zn—-Mn SMA polycrystal subjected to proportional and nonproportional complex
stress or strain histories are analyzed and compared with the experimental results. © 2001 Elsevier Science Ltd. All
rights reserved.
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1. Introduction

Shape memory alloys (SMAs) are composed of austenite and martensite, the forward and reverse
thermoelastic martensitic transformation in which determines the amazing properties of SMAs. When
cooled down below a critical temperature, a SMA will mainly be composed of martensite, behave ferro-
elastically (FE) and easily be manipulated in a very large strain range. When heated over a critical tem-
perature, the SMA changes back to the austenitic phase, the previous inelastic strain recovers and the SMA
resumes the shape it normally has at the higher temperature. This is shape memory effect (SME). At higher
temperature, applied stress may cause martensitic transformation and a SMA may deform plastically, both
of which may recover as the applied stress is removed, which is referred to as pseudoelasticity (PE). These
particular properties make SMAs be used as a kind of smart materials and receive increasing attention in
recent years.
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Great progress has been made in the constitutive modeling for SMAs in the past 20 years. In the early
constitutive models, attention was mainly paid to the phenomenological description for the behavior under
simple tension and compression with thermodynamic approaches or statistical micromechanics, such as
those by Falk (1980) and Achenbach et al. (1986). These models could qualitatively explain the pseudo-
elasticity and SME of SMAs, but it remained problems to be applied in practice. Graesser and Cozzarelli
(1991) phenomenologically proposed a simple and practical model by introducing an error function into the
back stress, which was further extended to the case of general state of stress (Graesser and Cozzarelli, 1994).
Tanaka (1986) obtained an expression for stress rate by making use of thermodynamic laws, which was
then simplified and integrated by Liang and Rogers (1990) to express the stress as a function of strain,
temperature and the volume fraction of martensite. Boyd (1994) proposed a model by decomposing strain
into three parts corresponding respectively to elasticity, temperature and phase transformation, which
could describe the pseudoelasticity and SME of SMAs and was applied to the analysis of intelligent
structures. Liang’s and Boyd’s models did not involve plastic strain, which plays a very substantial role in
both pseudoelastic behavior and SME. A constitutive model based on an internal variable formalism and
the framework of generalized plasticity was proposed by Auricchio et al. (1997), with which the basic
features of SMAs could be reproduced. Levitas (1995) discussed the phase transitions in elastoplastic
materials and the corresponding conditions. It was suggested that the phase transformation in a micro-
region be related to a critical value of the Gibbs free energy, and a description for the phase transfor-
mation in polycrystalline SMAs was obtained with a statistical method (Fischer et al., 1997). Goo and
Lexcellent (1997) proposed a micromechanically based Helmoholtz free energy, based on which a kinetic
relationship, a martensitic nucleation criterion and the reorientation criterion of martensitic variants were
obtained.

Being cognizant that the complex constitutive behavior of SMAs could hardly be well described with
phenomenological models, Tanaka et al. (1986) and Patoor et al. (1988) investigated the constitutive be-
havior of SMAs through microscopic analysis and the corresponding averaging procedure. It was, however,
limited to stress induced forward martensitic transformation and could not work well in the cases in-
volving reverse martensitic transformation and nonproportional loading. A micro-macro thermome-
chanical modelization of the grain behavior was proposed by Siredey et al. (1999), in which an average
martensite fraction in each domain was used as an internal variable, and a description for the evolution of
the material was suggested. The overall behavior of polycrystalline SMAs was then obtained with a self-
consistent scheme. Sun and Hwang (1993) proposed a model by making use of micromechanics and
thermodynamics, which could describe both forward and reverse martensitic transformation and the main
features of SMAs under complex deformation and temperature histories. These models, however, are
complicated and remain problems in practical engineering application.

The constitutive behavior of SMAs strongly depends on the histories of temperature and stress, and the
resulting forward and reverse thermoelastic martensitic transformation. A two-phase constitutive model
for SMAs is proposed based on the concept that a SMA is dynamically composed of austenite and mar-
tensite, and the constitutive behavior of the SMA 1is substantially the dynamic combination of that of each
of the two phases. Within the interested ranges of stress and temperature, the behavior of austenite is as-
sumed linearly elastic while that of martensite elastoplastic. The developed constitutive model can com-
prehensively describe the constitutive behavior of SMAs subjected to complex thermomechanical loading
histories. The forward and reverse martensitic transformation, SME, ferroelasticity and pseudoelasticity of
SMA Au-47.5 at.%Cd and the response of pseudoelastic behavior of Cu—-Al-Zn—-Mn SMA polycrystal
subjected to biaxially nonproportional stress or strain histories are described. The satisfactory agreement
between the analytical and experimental results (Sittner et al., 1995; Sittner and Takuda, 1995) well dem-
onstrates the validity of the proposed constitutive model.

The proposed model separates the complicated constitutive behavior of a SMA into the simple responses
of its two phases, and provides an easy but comprehensive method for the description for the constitutive
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behavior of SMAs under complex thermomechanical loading. Compared with the existing constitutive
models, the proposed one is concise and can easily be applied in practice.

2. A two-phase constitutive model for SMAs

A SMA is composed of austenite and martensite and the volume fraction of each phase evolves during a
thermomechanical loading process. A SMA behaves ferroelastically at lower level of stress or temperature
when it is mainly composed of martensite, but it behaves almost elastically at higher level of stress or
temperature when it is mainly composed of austenite. The macroscopic behavior of the SMA, such as
ferroelasticity, pseudoelasticity and SME can generally be regarded as the combination of the individual
behavior of each of the two phases.

In the following, the discussion is restricted to the case of small deformation, the material is assumed
plastically incompressible and the transformation lattice volume change is neglected (Sun and Hwang,
1993). The deviatoric strain e can, in general, be assumed to consist of elastic component e°, plastic
component e and phase transformation strain e’ i.e.,

e=e +e +e, (1)

where e is related to the temperature induced recovery of inelastic distortion. Assuming the strains in both
martensite and austenite are identical to the overall strain in the SMA, the macroscopic deviatoric stress s
and volumetric stress g, of SMAs can be expressed as follows

S=S8A+Sm, Om= (Ekk)A + (Ekk)M7 @

in which Sa, (Gi), and Sm, (Gu ), denote respectively the contributions of austenite and martensite to the
corresponding overall stress components.

It should be noted that the adoption of Eq. (2) is based on the following consideration. Macroscopically
speaking, there is no distinct structure in a polycrystalline SMA that definitely indicates the relationship
between the stresses (or strains) in a SMA and its two phases. On the other hand, for a given strain the
stress response in the martensite is, in general, much lower than that in the austenite, and the stress in the
SMA usually lies between those in its two phases. Eq. (2), together with the description for forward and
reverse martensitic transformation, may therefore provides a simpler way to obtain the overall stress re-
sponse of a SMA.

With experimental observation it is acceptable to assume that the austenite is elastic while the martensite
elastoplastic within the interested ranges of stress and temperature. Letting £, and & denote respectively the
volume fractions of austenite and martensite, sy and (o), denote respectively the deviatoric and the
volumetric stress components of martensite, sy and (o), denote those of austenite, and keeping in mind
the assumption that the strain and the phase transformation strain in martensite and austenite are identical
to the overall e and e, the conventional mixture theory gives

Sm=238m, (Gu)y = E(0u)m (3)
Sa =¢&asa,  (Ou)a = Calom)a,
with
E+iéa=1 4)
It may be more complicated for SMAs when the dynamic change of volume fraction and the effect of

boundaries between grains and phases are taken into account. In order to make the model more general, the
deviatoric part in Eq. (3) is rewritten in a more general form as follows
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Fig. 1. Mechanical model for the contribution of martensite.

§A = §A(e7 eTa T7 5)7 §M = §M(ea eTa T7p(r)7 6)7 (5)

where T denotes temperature, p”) (r = 1,2,...,n) represents a set of internal variables related to irre-
versible deformation. It is assumed in Eq. (5) that the contribution of austenite is determined by the current
states of strain and the phase transformation strain, temperature and martensitic volume fraction, while
besides these, an additional set of internal variables p”) (r = 1,2,...,n) were introduced to describe the
constitutive behavior of martensite.

Iwan (1967) used a simple mechanical model consisting of elastic and plastic elements to describe the
elastoplastic behavior of materials. It was extended to the model shown in Fig. 1 for the description of the
elastoplastic behavior of martensite. It contains a series of parallel Maxwell-type elements and an addi-
tional spring in series. In Fig. 1, the rth dissipation mechanism is described by a spring E, (with macro-
scopically average stiffness C,) and a dashpot-like block D, (with macroscopically average plastic damping
coefficient a,). E, is related to the stochastic internal structures and the energy stored in E, corresponds to
that stored in the microstress fields induced by the respective pattern of defects at the microlevel. e? denotes
plastic strain component. G(r) is the generalized force conjugated with the rth internal variable p) and the
following inequality should be satisfied if any change occurs to p”’ (Fan and Peng, 1991; Peng and Ponter,
1994)

Q" dp” =0 (r=1,2,...,n). (6)
From Fig. 1, one obtains
su=> Q" (7)
r=1

in which Qm is assumed to relate the response of the E, and the flow of D, with the following phenome-
nological relationships,

~\ - P —(r _ d )

Q"=cro@-p). Q" =a(rg P )

where z is generalized time. It was observed by Sittner et al. (1995) in biaxial tension—torsion tests that for
some SMAs the response is not isotropic and the equivalent stress does not obey the von Mises rule. This
phenomenon can be described by introducing the following defined generalized time

dg

dZ:m7

(dg)* = de® : P : deP, (9)
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where P is a material-dependent tensor of rank four and f(z) describes the change of the plastic damping
property of the dashpot-like blocks D, (see Fig. 1). Differentiating Eq. (8) leads to

A~ _ T~ p l aér i a?r _ —(r)
dQ" = C.(T, ¢)de” + (Cr - = oz de-wa:)Q (10)
where
C,
0 = —.
a,

Substituting Eq. (10) into Eq. (7) yields

dsy = > dQ"” =74de” + Bdz + CdT + Dd¢, (11)
r=1
in which
_ & — &1 66 1 @C
; r7 Zcer C T 57 Q ZC 55 (12)

If C, tends to infinite, it is easily seen in Fig. 1 that p(') = e® and making use of Eq. (8), Eq. (7) can be
rewritten as

de?

_F= 1

SM r=a — dZ ( 3)
where

a0

r=>» Q. (14)

r=2

The combination of Eq. (13) and Eq. (9) gives

Sy —TF):P: 5y —T) = [af()]. (15)

Egs. (15) and (13) have the forms of yield surface and flow rule, in which ¥ can be regarded as the center and
P determines the shape of the surface.

It is known that the temperature induced reverse martensitic transformation causes the recovery of the
distortion of lattice, which is related to both the current states of plastic strain and martensitic phase
transformation strain. The temperature induced change of martensite volume fraction during reverse
martensitic transformation. Letting n = e” + €T, de' can be assumed to take the following linear relation

deT:%km< dr — ‘—dT’) (16)

where k7 is a material constant. It is seen that e” changes only when both n # 0 and (0¢/0T)dT < 0, i.e.,
reverse martensitic transformation occurs.

The elastic response of martensite and austenite can be expressed, by making use of Eq. (1) and keeping
in mind that austenite is assumed elastic, as

§M:2EM(T,5)(e—ep—eT), §A:26A(T7§)(G—CT), (17)

where Gy and G, are respectively the macroscopic average shear modulus of martensite and austenite. The
differential of Eq. (17) can be derived as,
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S o7 _ p_ T SMm GEM 66M
dsy = 2Gy(de — de? — de )+_G—M <6T dT+—aé dé ),
_ _ (18)
= A _ T §A aGA aGA
dsy = 2Ga(de — de )Jr_G—A <6T dT+—aé dé).

For simplicity, the transformation lattice volume change is neglected in the present stage since for most
SMA:s it is negligible compared with the lattice shear deformation (Sun and Hwang, 1993). The contri-
butions of martensite and austenite to the overall volumetric stress can, therefore, be determined respec-
tively with

(@ui ) = 3Km(T, &) e — 3am(T)(T — Ty,

_ — (19)

(Ou)a = 3Ka(T, &) [ewe — 3oa(T)(T — T)],
where T denotes reference temperature, ¢y the volumetric strain, Ky and ay the macroscopic average
elastic volumetric modulus and the thermal expansion coefficient of martensite, respectively. The differ-
ential of Eq. (19) is

_ — 1 0Ky,
(4G )y = 3Kwm(T, &) dey + % a—gM (T )y dE
1 0K doyg — _
M Gy — MR (T — Ty) — o (T)K o | AT,
Ky OT dr
| oK (20)
_ > M
(dow), = 3KA(T, &) dew + E_A a—f GRS
1 0Ka doys — _
|:1—<—A 6—;(0'1(1()A — 9d—; KA(T — T()) — 9OCA(T)KA:| dT

In a stress-free state the volume fraction of martensite is determined by temperature, and applied stress
may increase the transformation temperature. Tanaka (1986), therefore, suggested the following relation
for the determination of the volume fraction ¢,

- 1 — exp[—An(M; + Bno. —T)] A—M (21)
| exp[~A4a(T — (45 + Baoe))] M — 4,
in which
o if d>0
<¢>—{o if ¢ <0, >

M; and A denote respectively start temperatures of martensitic and austenitic transformation, A, Bp,
A, and B, material constants related to phase transformation processes, and o, is equivalent stress defined

by
Ue:\/%S:P:S. (23)

g, 1s reduced to the conventional equivalent stress if P is chosen an identity tensor.
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3. Analytical approach
3.1. Specification of the constitutive model
For simplicity in the initial application, it is assumed that
GA(T, &) = (1= 9ga(T)Gy,  Ka(T,€) = (1 - Oga(T)Ky, (24)
C(T,¢) = Een(T)C),  a(T.&) = égm(T)a),

= - (25)
Gu(T, &) = Eam(T) Gy, Kwm(T, &) = éem(T)Ky,

where G} and K} are respectively the elastic shear and volumetric moduli of austenite at reference tem-
perature Ty, Gy, and K}, are those of martensite, g1 (7) and gw(7) are temperature-dependent coefficients of
austenite and martensite, respectively, C° and a° are the parameters of plasticity of martensite at 7,. With
these definitions one obtains the expressions shown in Eq. (3), in which

SA = ZgA(T)G%(e — eT), (Ukk)A = 3gA(T)Kg[8kk — 30(A(T — T())] (26)
denote respectively the deviatoric and the volumetric components of the stress in austenite, and

sw=2gu(T)Gyle— e —e'),  (ou)y = 3gm(T)Kylen — 3am(T — To)] (27)

denote those in martensite. Alternatively one can derive

Sm = ZQM (28)
r=1
dp(r)
Q<r> = Cr(T) (ep - p(’)) = Cr(T) d (29)
Z
and Egs. (13)—(15) can then be rewritten as
de? 2
SM—I':(HE, (SM_r):P:(SM_r):[alf(Z)} ) (30)
in which
r=>» Q". (31)
r=2

Eq. (30) represents the yield condition and flow rule of martensite, in which a; represents the initial yield
stress of martensite.

3.2. Identification of the material parameters

The involved material parameters can be separated into three groups: parameters of martensite, those
of austenite and parameters related to forward and reverse martensitic transformation. These material
parameters can be identified by the following procedure:
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e Keeping temperature sufficiently low (7 < M;) so that the SMA to be tested is composed of pure mar-
tensite, the following parameters can be identified with a simple elastoplastic deformation test:
(1) Young’s modulus Ey (or shear modulus Gy ) and Poisson’s ratio vy
(2) Plastic parameters C, and o, (r =1,...,n)
(3) Hardening parameter f(z)
(4) P, if the response is anisotropic
(5) Adjusting temperature and repeating (1) or (2) several times; then determining gy (7') using the ob-
tained set of Gy or C,.

e Keeping temperature sufficiently high so that no martensitic transformation can occur when applying the
stress on the SMA to be tested and the SMA is composed of pure austenite during testing, the following
parameters can be identified with a simple test:

(1) Young’s modulus E4 (or shear modulus G,) and Poisson’s ratio va
(2) Adjusting temperature and repeating (1) several times; then determining g (7) using the obtained
set of Gy.

o M, M, A, A; are usually provided by material provider, and the rest parameters related to forward and
reverse martensitic transformation can be identified by using pseudoelasticity and SME:

(1) An, Bn, in a loading process involving stress induced martensitic transformation

(2) 4,, B,, in the subsequent unloading process involving stress induced reverse martensitic transfor-
mation

(3) k1 with a SME (temperature induced reverse martensitic transformation that induces the recovery
of previous residual strain).

3.3. Numerical algorithm

It is not intended to introduce a yield surface in the following analysis.
In order to analyze the response of the SMA subjected to given temperature and strain histories, the
following governing equation can be obtained by combining Egs. (11) and (18)

(A +2Gy)de® = —Bdz + dy, (32)
where
_ — 8 OG ~ 5u 0G
=2 _de") - (C- MM (DM M) g
dy Gp(de —de’) (C Gy T d Gy O dé¢ (33)
Substituting Eq. (32) into Eq. (9) yields
B:P:B— (4+2Gy)’f]dz? —2B:P:dydz+ ) : P:dy = 0. (34)

Given strain and temperature increments, d¢ and de” can be calculated respectively with Egs. (21) and
(16), dz can be obtained by solving Eq. (34), and then de? with Eq. (32), dsy with Eq. (11) and then §y;; on
the other hand, s5 can simply be calculated with Egs. (24) and (3); the overall stress s can be calculated with

Eq. (2).
If a loading process is temperature- and stress-controlled, the corresponding governing equation can be
derived by combining Egs. (11) and (18) and the differential form of Eq. (24) (first part) as follows

ds = Ade’ + Bdz +dC, (35)
where

A=J4+2(.—1)Gy, B=B, (36a)
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—  Su 0Gum Sm OGym  Sa 0Gu
[( s 6T>+(GM oT ' G w)]

+{i<ﬁ—i—Maﬂ>+(§—Mm—M+§—Aaﬂ>]dé, (36b)

Gy O Gu 0 G O
G
=1+ ﬁ (37)
Rewriting Eq. (35) as
Ade? = —Bdz + (ds — dC) (38)
one easily obtains the following equation by using Eq. (9)
(B:P:B—4>f?)(dz)’ —2B: P: (ds — dC)dz + (ds — dC) : P : (ds — dC) = 0. (39)

Given stress and temperature increments, d¢ and de” can be calculated respectively with Egs. (21) and
(16), dz from Eq. (39), and then de? with Eq. (38), and de with Eq. (18).

4. Comprehensive description of the behavior of SMA Au—47.5 at.%Cd

Nakanishi et al. (1973) made a detailed investigation on the uniaxial behavior of SMA Au—47.5 at.%Cd.
The main constitutive behavior of the material will be described with the proposed constitutive model.

It is found from the experimental results that the effect of temperature on material constants can be
neglected, i.e., g = ga = 1. In Egs. (7) and (11), n = 3 is selected to satisfy the requirement of both the
accuracy and efficiency in the analysis for practical engineering problems (Valanis and Fan, 1983), and
f(z) =1 for the material did not show marked isotropic hardening. M; and A4, were given 331 and 345 K
(Nakanishi et al., 1973), respectively. For the description of uniaxial constitutive behavior, P can be taken
as an identity tensor. The other material constants were identified as follows:

G = GY, = 1500 MPa, vy = vs = 0.28,
Cl,; =185,1.8,0.41 GPa, ;53 = 30000, 840,65,
Ay, By, Am, B = 0.45,3.2,0.25.4.7,  ky = 3.2.

Fig. 2 shows the description of the SME of Au-47.5 at%Cd. In Fig. 2(a) the SMA was stretched at 14°C
(287 K) up to ¢ = 17.2 MPa and then unloading. It is seen that elastoplastic deformation occurred to the
material and large residual strain existed after unloading. Under the given temperature and loading con-
dition, the material kept martensitic during this process. Then the material was heated and the variation of
strain against temperature is plotted in Fig. 2(b). It can be seen that the strain almost kept unchanged
before the temperature reached A4, (345 K) but recovered quickly once temperature exceeded this criterion
when reverse martensitic transformation took place. The residual strain gradually tended to vanish when
temperature was sufficiently high and the material was mainly composed of austenite. Then if the tem-
perature fell below M, martensitic transformation would occur and the material would return to its
original state. This process can be quite satisfactorily described with the proposed constitutive model.

Fig. 3(a) and (b) shows respectively the tensile/compressive curve and the contributions of austenite and
martensite of Au-47.5 at%Cd at 84°C (357 K). It can be seen from Fig. 3(a) that although the two phases
were assumed respectively elastic and elastoplastic, the contributions of the two phases G and @y, in which
the dynamic change of volume fraction is taken into account, to the overall stress looks like “pseudo-
elasticity”. As the sum of G5 and Gy, the overall stress, therefore, is typically pseudoelastic. It is known that
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Fig. 2. Analysis for SME of SMA Au—47.5 at%Cd: (a) loading and unloading curve and (b) strain recovery during heating.
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Fig. 3. Pseudoelasticity of Au—47.5 at%Cd at 84°C (357 K) under reversed strain: (a) variations of Gy and &4 and (b) macroscopic o—¢
curve.

the material was almost composed of austenite at given temperature (T ~ 4; = 358 K), applied stress
raised M; + Bn,0., and martensitic transformation took place as M + B0, > T. During unloading, 4+
B.o. decreased and reverse martensitic transformation occurred as 4 + B,0. < T. Compared with exper-
imental results (Nakanishi et al., 1973), it can be seen that the pseudoelastic behavior was well described
with the proposed model.

The tensile/compressive curves of Au-47.5 at.%Cd at different temperatures are shown in Fig. 4(a). At
57°C (330 K) the constitutive behavior was typically elastoplastic. It is known that at this temperature
(T < Ay < A5 + B,0.), the material kept mainly martensitic during the loading and unloading process, and
the behavior of the SMA was, in fact, the elastoplastic behavior of martensite. At 93°C (366 K) the material
was mainly composed of austenite (7 > A = 358 K) and the characteristics of the constitutive behavior
should be similar to that shown in Fig. 3, but the critical stress should increase due to the increase of
temperature. At a higher temperature 7= 112°C (385 K), the critical stress became larger due to that
higher stress was needed for martensitic transformation, and the hysteresis loop became much smaller
because the contribution of martensite became less significant. It can be conjectured that if temperature is
sufficiently high so that the no stress is able to induce martensitic transformation, the material would be
composed of austenite and the behavior of the material would be determined by austenite.
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Fig. 4. Response of Au-47.5 at’%Cd at different temperatures: (a) o—¢ curves at typical temperatures and (b) variation of critical stress
vs. temperature.

Fig. 4(b) shows the temperature dependence of the critical stress. It can be seen that at lower temperature
the critical stress almost keeps constant, while at higher temperature the increase of critical stress is almost
linearly proportional to the increase of temperature. It is known from the previous discussion that at lower
temperature the behavior of the SMA is mainly determined by the elastoplastic property of martensite.
With the increase of temperature the volume fraction of austenite increases, the contribution of austenite to
overall stress increases and the critical stress of the material, therefore, increases.

5. Analysis of the pseudoelastic behavior of Cu—Al-Zn—-Mn SMA polycrystal

Sittner et al. (1995) and Sittner and Takuda (1995) systematically investigated the pseudoelastic behavior
of Cu—-Al-Zn-Mn SMA polycrystal at temperature 7 = 4¢ + 25 K. Thin-walled specimens with de = 8
mm and d;,, = 5 mm were used for the combined tension—torsion tests. The specimens were finally heat
treated at 873 K for two hours and quenched in ice water. The measured grain size of the material was less
than 120 um in diameter. The transformation temperatures was determined by electric resistivity mea-
surement as My = 223 K, M, = 239 K, 4, = 248 K and 4; = 260 K. The experiment was performed in a
stress or strain controlled mode. The shear strain and stress were calculated with (Sittner et al., 1995)

dexte 16Mdext
= =Tt 40
2 " n(dh, = db) w

where 0 denotes the torsion angle in length / and M is the measured torque. It can be seen that if plastic
deformation occurred, Eq. (40) might overestimate the shear strain and shear stress. An important phe-
nomenon reported was that the equivalent stress and strain did not obey von Mises equivalent rule (Sittner
et al., 1995). In the case of combined tensile-torsional loading the equivalent stress and strain were defined,
by introducing factors C® and CF (Sittner et al., 1995), as

Geg = \/ 02 + (C51)°, &g = \/ & + (y/CE)?, (41)

in which C® was determined by the ratio of tensile and torsional yield stress, and C® by the ratio of torsional
and tensile yield strain. This phenomenon can be described by a proper definition of P (see Eq. (9)). First
part of Eq. (9) can be expressed in the following matrix form by setting the sequence of plastic strain
components as (e}, €3, €33, €, ey, €3, 3, €5, €5,),



6936 X. Peng et al. | International Journal of Solids and Structures 38 (2001) 6925-6940

400 300
200 150
< <
E =]
b e
-200 - Calculated -150 [ Calculated
o = = == Experimental Experimental
400 —= : -300
-2 -1 0 1 2 -3 -1.5 0 1.5 3
€/ % Y/ %

Fig. 5. Uniaxial stress—strain curves of Cu-Al-Zn-Mn SMA polycrystal, strain control, 285 K (a) symmetrical tension — compression
and (b) symmetrical torsion.

[P] = diag(1,1,1,k% K2 k2 k2, k2 K2), (42)

and it is easily found that the proposed model reduces to the initially isotropic case if k> = 1.

Since the experiments were performed at a constant temperature (Sittner et al., 1995; Sittner and
Takuda, 1995), the effect of temperature on the material properties and the temperature induced phase-
transformation strain e’ (see Eq. (16)) would not be considered in the corresponding analysis. In Egs. (7)
and (11), n = 3 was also chosen to satisfy the requirements of both the accuracy and the efficiency in the
analysis (Valanis and Fan, 1983), and f(z) = 1 was assumed as the experimental results did not show
distinct isotropic hardening. Young’s modulus and elastic shear modulus of austenite were measured as
E} =53 GPa and G} = 19.5 GPa (Sittner et al., 1995), and the other material constants were determined as
follows

EY, G = (16.2,6.0) GPa, Ay, B,, Ay, By = 0.028,0.83,0.035,2.4
€Y, = (550, 24,1.1) GPa, oy,5 = 10000,420,35, &% = 0.7

Fig. 5 shows the pseudoelastic behavior of the Cu-Al-Zn-Mn SMA polycrystal subjected to uni-
axial forward and reverse straining. It can be seen that the basic characteristics of the pseudoelastic be-
havior of the material are satisfactorily replicated. Experimental observation (Sittner et al., 1995; Sittner
and Takuda, 1995) showed that there existed small residual strain after unloading, which might be at-
tributed to: (1) plastic deformation may also occurred to austenite, or (2) the reverse martensitic trans-
formation may not be complete. The latter can be described with the proposed model without difficult, and
the former can also be described by simply giving austenite elastoplastic property. Since the residual strain
was very small, we tend to ignore it or equivalently describe it with the proposed model in order to reduce
complexity.

The response of the SMA polycrystal subjected to non proportional strain along a square path in an ¢~y
plane is shown in Fig. 6. The four vertexes of the square were (0, 0), (0,0.0264), (0.0178,0.0264), (0.0178,0)
in sequence. Both the experimental and the calculated results showed that the stress did not vanish when
strain returned to the origin, which also implied the existence of residual strain after unloading. The error
between the calculated and experimental results may partly be attributed to difference between the con-
trolled strain paths. In calculation an ideal square strain path in e~ plane was used, while in the experiment
(Sittner et al., 1995) an invariant value of shear strain was defined (see Eq. (39)) and used to control the
experiment. Comparison showed that there was a distinct difference between the paths used in the analysis
and used in the experiment. It should also be noted that there were marked differences between the coef-
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Fig. 6. Response of Cu-Al-Zn-Mn SMA polycrystal subjected to combined biaxial strain along a square path, 7=285 K: (a) tensile
response and (b) torsional response.

ficients CS = ¢F /tF (or CE = yF/eF) obtained in different experiments (Sittner et al., 1995), but in the
analysis, the material parameters kept unified throughout all the calculation.

The response of the SMA polycrystal subjected to nonproportional stress along a square path in a o—t
plane is shown in Fig. 7. The four vertexes of the square were (0, 0), (250 MPa, 0), (250 MPa, 200 MPa),
(0, 200 MPa) in sequence. Fig. 7(a) and (b) show respectively the tensile and torsional responses. Analysis
showed that during the stress cycle, the material endured severe plastic deformation, but it almost recovered
after unloading. In Fig. 7(a) and (b) the end point of stress and the corresponding strain were expressed
with a small circle, which showed that the residual strain almost vanished.

Fig. 8 shows the response of the SMA polycrystal subjected to nonproportional stress along a triangular
path in a o—7 plane. The three vertexes of the triangle were (0, 0), (0, 260 MPa), (380 MPa, 0) in sequence. It
was observed in experiment that, on one hand, the strain in a nonproportional stress loop was reversible,
and on the other hand, the equivalent stress—strain loop corresponded well to the uniaxial pseudoelastic
loop (Sittner et al., 1995; Sittner and Takuda, 1995). Both the two characteristics were satisfactorily rep-
licated in the analysis. The small circles in Fig. 8(a) and (b) also represent the stress and strain after
complete unloading, which shows that the residual strain almost completely recovered. The calculated
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Fig. 7. Response of Cu-Al-Zn-Mn SMA polycrystals subjected to combined biaxial stress along a square path, 7 = 285 K: (a) tensile
response and (b) torsional response.
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Fig. 8. Response of Cu-Al-Zn-Mn SMA polycrystal subjected to combined biaxial stress along a triangular path, 7 = 285 K: (a)
tensile response and (b) torsional response.
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Fig. 9. Equivalent stress—strain relation along different loading paths.

equivalent stress—strain loop was shown in Fig. 9, which was almost identical to that under tensile loading
and unloading.

Sittner et al. (1995) observed that the equivalent stress—strain loops corresponding to different non-
proportional loading and unloading were well consistent with the uniaxial pseudoelastic loop. Substituting
the definition of P (see Eq. (40)) into Eq. (9) and noticing the result in Eq. (15), the equivalent strain and
stress in biaxial tension—torsion case can be obtained as

beq = V& + K223, 0eq =V 0%+ 3k (43)

Fig. 9 shows the o.q—¢.q curves corresponding to the above four different loading paths in a biaxial
tension—torsion stress or strain plane. Comparison showed that the g.q—¢.q curves corresponding to non-
proportional stress or strain paths are similar to tensile o—¢ curve. This implied that the pseudoealstic
behavior of the SMA polycrystal under nonproportional loading can be characterized by the equivalent
stress—strain relation obtained from uniaxial or proportional experiment (Sittner et al., 1995). It can be seen
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from the curve corresponding to triangular stress path (see Fig. 9) that there were a small additional un-
loading-reloading and the corresponding reverse/forward martensitic transformation in this process, which
resulted in some additional plastic strain. But the strain also recovered after completely unloading. This
phenomenon was identical to the experimental observation (Sittner and Takuda, 1995).

6. Conclusions and discussions

A two-phase constitutive model was proposed for polycrystalline SMAs based on that a SMA is dy-
namically composed of austenite and martensite, and the overall constitutive behavior of the SMA is the
dynamic combination of the individual behavior of each of the two phases. Within the interested ranges of
stress and temperature, the behavior of austenite was assumed linearly elastic while that of martensite
elastoplastic. Initial anisotropy of SMAs could be taken into account by introducing a forth order material
property tensor P. The corresponding numerical algorithms for both strain- and stress-controlled process
were proposed. The main characteristics of SMAs such as ferroelasticity, SME and pseudoelasticity can be
described with the proposed model.

The ferroelasticity, pseudoelasticity and SME of SMA Au-47.5 at.%Cd subjected to uniaxial reversed
loading at constant or varying temperature were successfully replicated. The pseudoelasticity of Cu-Al-
Zn—-Mn SMA polycrystal subjected to proportional and nonproportional complex stress and strain his-
tories were analyzed and compared with the experimental results. The comparison between the calculated
and experimental results show satisfactory agreement, and the validity of the proposed constitutive model
was well demonstrated.

In the proposed two-phase constitutive model, the strains in the two phases of a SMA were assumed
identical to the overall strain in the SMA, while the overall stress in the SMA was the sum of the con-
tributions of the two phases. The complicated constitutive behavior of a polycrystalline SMA is separated
into the simple constitutive behavior of its two phases, which provides a simple but comprehensive de-
scription for the constitutive behavior of SMAs. It is known that given a strain the stress response of a
martensite is much lower than austenite, and that of a SMA usually lies between those of the two phases.
The responses of both martensite and austenite can be determined individually under some specific thermo-
mechanical loading conditions when the SMA is mainly composed of a single phase. If Reuss assumption
were used for the analysis, i.e., the stress in the two phases of a SMA were assumed identical to the overall
stress in the SMA. It can easily be found that the stress in martensite may exceed its load-bearing capability
unless some residual stress was introduced, which needs additional analysis and may increase the com-
plexity of the constitutive model. It has been observed that there may exist distinct microstructures inside
the grains of some polycrystalline materials during stress-induced martensitic transformation (Siredey et al.,
1999), which may give possibility to develop a microstructure-based two-phase constitutive model.

Martensite occurs in different variants, the number of which depends on the special type of the SMA
under consideration. The plastic deformation of martensite is the macroscopic counterpart of the stress
induced transformation between the variants. If many variants involved in a plastic deformation process,
additional reorientation hardening/softening (Sun and Hwang, 1993) can be considered by introducing
kinematic hardening terms to obtain a more realistic description.

It should be noted that plastic flow may also take place in austenite when the applied stress is sufficiently
large. Although this kind of phenomenon was beyond the discussion in this paper, it can, however, be
considered in the proposed constitutive framework by assuming that austenite is also elastoplastic. The
decrease of the critical stress with the increase of temperature at lower temperature can also be described by
simply assuming the decrease of gy (7) and ga(7T) (see Egs. (24) and (25)) with the increase of temperature,
and the “V”’ shape of the relation between critical stress and temperature (Sun and Hwang, 1993) can thus
be replicated.
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